Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Drosophila Mitochondrial Transcription Factor B2 Regulates Mitochondrial DNA Copy Number and Transcription in Schneider Cells

Authors: Rafael Garesse; Yuichi Matsushima; Laurie S. Kaguni;

Drosophila Mitochondrial Transcription Factor B2 Regulates Mitochondrial DNA Copy Number and Transcription in Schneider Cells

Abstract

We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor B2 (d-mt-TFB2), a protein that plays a role in mitochondrial transcription and mitochondrial DNA (mtDNA) replication in Drosophila. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB2 to 5% of its normal level in Schneider cells. RNAi knock-down of d-mtTFB2 reduces the abundance of specific mitochondrial RNA transcripts 2- to 8-fold and decreases the copy number of mtDNA approximately 3-fold. In a corollary manner, we find that overexpression of d-mtTFB2 increases both the abundance of mitochondrial RNA transcripts and the copy number of mtDNA. In a comparative experiment, we find that overexpression of Drosophila mitochondrial transcription factor A (d-TFAM) increases mtDNA copy number with no significant effect on mitochondrial transcripts. This argues for a direct role for mtTFB2 in mitochondrial transcription and suggests that, if TFAM serves a role in transcription, its endogenous level limits mtDNA copy number but not transcription. Furthermore, we suggest that mtTFB2 increases mtDNA copy number by increasing the frequency of initiation of DNA replication, whereas TFAM serves to stabilize and package mtDNA in mitochondrial nucleoids. Our work represents the first study to document the function of mtTFB2 in vivo, establishing a dual role in regulation of both transcription and replication, and provides a benchmark for comparative biochemical studies in various animal systems.

Keywords

Transcription, Genetic, Molecular Sequence Data, Gene Dosage, High Mobility Group Proteins, Nuclear Proteins, DNA, Mitochondrial, Recombinant Proteins, Cell Line, DNA-Binding Proteins, Mitochondrial Proteins, Mice, Drosophila melanogaster, Animals, Drosophila Proteins, Humans, RNA, RNA Interference, Amino Acid Sequence, Sequence Alignment, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
gold