<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Drosophila Mitochondrial Transcription Factor B2 Regulates Mitochondrial DNA Copy Number and Transcription in Schneider Cells

pmid: 15060065
Drosophila Mitochondrial Transcription Factor B2 Regulates Mitochondrial DNA Copy Number and Transcription in Schneider Cells
We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor B2 (d-mt-TFB2), a protein that plays a role in mitochondrial transcription and mitochondrial DNA (mtDNA) replication in Drosophila. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB2 to 5% of its normal level in Schneider cells. RNAi knock-down of d-mtTFB2 reduces the abundance of specific mitochondrial RNA transcripts 2- to 8-fold and decreases the copy number of mtDNA approximately 3-fold. In a corollary manner, we find that overexpression of d-mtTFB2 increases both the abundance of mitochondrial RNA transcripts and the copy number of mtDNA. In a comparative experiment, we find that overexpression of Drosophila mitochondrial transcription factor A (d-TFAM) increases mtDNA copy number with no significant effect on mitochondrial transcripts. This argues for a direct role for mtTFB2 in mitochondrial transcription and suggests that, if TFAM serves a role in transcription, its endogenous level limits mtDNA copy number but not transcription. Furthermore, we suggest that mtTFB2 increases mtDNA copy number by increasing the frequency of initiation of DNA replication, whereas TFAM serves to stabilize and package mtDNA in mitochondrial nucleoids. Our work represents the first study to document the function of mtTFB2 in vivo, establishing a dual role in regulation of both transcription and replication, and provides a benchmark for comparative biochemical studies in various animal systems.
- Autonomous University of Madrid Spain
- Spanish National Research Council Spain
- Michigan State University United States
Transcription, Genetic, Molecular Sequence Data, Gene Dosage, High Mobility Group Proteins, Nuclear Proteins, DNA, Mitochondrial, Recombinant Proteins, Cell Line, DNA-Binding Proteins, Mitochondrial Proteins, Mice, Drosophila melanogaster, Animals, Drosophila Proteins, Humans, RNA, RNA Interference, Amino Acid Sequence, Sequence Alignment, Transcription Factors
Transcription, Genetic, Molecular Sequence Data, Gene Dosage, High Mobility Group Proteins, Nuclear Proteins, DNA, Mitochondrial, Recombinant Proteins, Cell Line, DNA-Binding Proteins, Mitochondrial Proteins, Mice, Drosophila melanogaster, Animals, Drosophila Proteins, Humans, RNA, RNA Interference, Amino Acid Sequence, Sequence Alignment, Transcription Factors
15 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).72 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%