Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2009 . Peer-reviewed
Data sources: Crossref
Development
Article . 2009
versions View all 2 versions

Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b

Authors: Monica, Dixon Fox; Ashley E E, Bruce;

Short- and long-range functions of Goosecoid in zebrafish axis formation are independent of Chordin, Noggin 1 and Follistatin-like 1b

Abstract

The organizer is essential for dorsal-ventral (DV) patterning in vertebrates. Goosecoid (Gsc), a transcriptional repressor found in the organizer, elicits partial secondary axes when expressed ventrally in Xenopus, similar to an organizer transplant. Although gsc is expressed in all vertebrate organizers examined, knockout studies in mouse suggested that it is not required for DV patterning. Moreover, experiments in Xenopus and zebrafish suggest a role in head formation, although a function in axial mesoderm formation is less clear. To clarify the role of Gsc in vertebrate development, we used gain- and loss-of-function approaches in zebrafish. Ventral injection of low doses of gsc produced incomplete secondary axes, which we propose results from short-range repression of BMP signaling. Higher gsc doses resulted in complete secondary axes and long-range signaling, correlating with repression of BMP and Wnt signals. In striking contrast to Xenopus, the BMP inhibitor Chordin (Chd) is not required for Gsc function. Gsc produced complete secondary axes in chd null mutant embryos and gsc-morpholino knockdown in chd mutants enhanced the mutant phenotype, suggesting that Gsc has Chd-independent functions in DV patterning. Even more striking was that Gsc elicited complete secondary axes in the absence of three secreted BMP antagonists, Chd, Follistatin-like 1b and Noggin 1, suggesting that Gsc functions in parallel with secreted BMP inhibitors. Our findings suggest that Gsc has dose dependent effects on axis induction and provide new insights into molecularly distinct short- and long-range signaling activities of the organizer.

Related Organizations
Keywords

Embryo, Nonmammalian, Follistatin-Related Proteins, Receptors, Notch, Zebrafish Proteins, Animals, Genetically Modified, Goosecoid Protein, Bone Morphogenetic Proteins, Mutation, Animals, Intercellular Signaling Peptides and Proteins, Carrier Proteins, Zebrafish, Body Patterning, Glycoproteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Average
bronze