Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied B...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Biomedicine
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions

Yeast telomeres: how to ignore essential double-strand DNA breaks?

Authors: Ľubomír Tomáška; Judita Sadovská; Jozef Nosek; Jack D. Griffith;

Yeast telomeres: how to ignore essential double-strand DNA breaks?

Abstract

Summary DNA looping is one of the mechanisms involved in telomere maintenance. It probably provides a solution not only to ‘the end-replication problem’, but also for the protection of chromosomal ends against degradation enzymes and, as typical double-strand breaks, from DNA repair machinery. Telomeric loops (t-loops) formed by an invasion of protruding 3’ overhangs into the doublestranded telomeric regions were observed in a variety of organisms ranging from ciliates to mammals. Genetic data indicate that looping also occurs at the telomeres of Saccharomyces cerevisiae, suggesting its importance for telomere function in yeast. However, several observations argue against the presence of ‘true’ t-loops in the budding yeast telomeres (e.g. the lack of TRFlike protein, heterogeneous telomeric sequences). Instead, telomeres in S. cerevisiae appear to form fold-back structures mediated by protei n-protein interactions. To directly visualize the telomeric structure in budding yeast, we developed a system based on a mini-chromosome carrying an array of lac operator sequences allowing its purification by the lac repressor affinity column. In contrast to budding yeast, the fission yeast Schizosaccharomyces pombe contains a homologue of the human telomeric protein TRF2, designated Taz1p. As the TRF2 protein has been implicated in remodelling telomeres into t-loops, the ability of Taz1p to promote t-loop formation is examined by electron microscopy using purified protein and synthetic templates containing a double-stranded fission yeast telomeric tract. Our studies should shed some light not only on telomeric architecture in yeast, but should also be inst rumental in deciphering detailed telomeric structure in higher eukaryotes.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold