Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 1999 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions

DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation

Authors: Eisenstat, David D.; Liu, Jen Kuei; Mione, Maria Caterina; Zhong, Weimin; Yu, Guoying; Anderson, Stewart A.; Ghattas, Ingrid; +2 Authors

DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation

Abstract

The homeobox genes in the Dlx family are required for differentiation of basal forebrain neurons and craniofacial morphogenesis. Herein, we studied the expression of Dlx-1, Dlx-2, and Dlx-5 RNA and protein in the mouse forebrain from embryonic day 10.5 (E10.5) to E12.5. We provide evidence that Dlx-2 is expressed before Dlx-1, which is expressed before Dlx-5. We also demonstrate that these genes are expressed in the same cells, which may explain why single mutants of the Dlx genes have mild phenotypes. The DLX proteins are localized primarily to the nucleus, although DLX-5 also can be found in the cytoplasm. During development, the fraction of Dlx-positive cells increases in the ventricular zone. Analysis of the distribution of DLX-1 and DLX-2 in M-phase cells suggests that these proteins are distributed symmetrically to daughter cells during mitosis. We propose that DLX-negative cells in the ventricular zone are specified progressively to become DLX-2-expressing cells during neurogenesis; as these cells differentiate, they go on to express DLX-1, DLX-5, and DLX-6. This process appears to be largely the same in all regions of the forebrain that express the Dlx genes. In the basal telencephalon, these DLX-positive cells differentiate into projection neurons of the striatum and pallidum as well as interneurons, some of which migrate to the cerebral cortex and the olfactory bulb.

Keywords

Cell Nucleus, Homeodomain Proteins, Neurons, Cytoplasm, Gene Expression Regulation, Developmental, Mitosis, Cell Differentiation, 3T3 Cells, Basal Ganglia, Recombinant Proteins, Cerebral Ventricles, S Phase, Mice, Prosencephalon, Basal ganglia; Dlx; Embryo; Forebrain; Neuroscience (all), Isomerism, Antibody Specificity, Mutagenesis, Animals, RNA, Messenger, In Situ Hybridization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    264
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
264
Top 1%
Top 1%
Top 1%