Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Identification of Interaction Sites between Human βA3- and αA/αB-crystallins by Mammalian Two-hybrid and Fluorescence Resonance Energy Transfer Acceptor Photobleaching Methods

Authors: Ratna, Gupta; Om P, Srivastava;

Identification of Interaction Sites between Human βA3- and αA/αB-crystallins by Mammalian Two-hybrid and Fluorescence Resonance Energy Transfer Acceptor Photobleaching Methods

Abstract

Our recent study has shown that betaA3-crystallin along with betaB1- and betaB2-crystallins were part of high molecular weight complex obtained from young, old, and cataractous lenses suggesting potential interactions between alpha- and beta-crystallins (Srivastava, O. P., Srivastava, K., and Chaves, J. M. (2008) Mol. Vis. 14, 1872-1885). To investigate this further, this study was carried out to determine the interaction sites of betaA3-crystallin with alphaA- and alphaB-crystallins. The study employed a mammalian two-hybrid method, an in vivo assay to determine the regions of betaA3-crystallin that interact with alphaA- and alphaB-crystallins. Five regional truncated mutants of betaA3-crystallin were generated using specific primers with deletions of N-terminal extension (NT) (named betaA3-NT), N-terminal extension plus motif I (named betaA3-NT + I), N-terminal extension plus motifs I and II (named betaA3-NT + I + II), motif III plus IV (named betaA3-III + IV), and motif IV (named betaA3-IV). The mammalian two-hybrid studies were complemented with fluorescence resonance energy transfer acceptor photobleaching studies using the above described mutant proteins, fused with DsRed (Red) and AcGFP fluorescent proteins. The results showed that the motifs III and IV of betaA3-crystallin were interactive with alphaA-crystallin, and motifs II and III of betaA3-crystallin primarily interacted with alphaB-crystallin.

Related Organizations
Keywords

Binding Sites, Photobleaching, alpha-Crystallin B Chain, Transfection, Crystallins, beta-Crystallin A Chain, Molecular Weight, Solubility, Mutagenesis, Two-Hybrid System Techniques, Fluorescence Resonance Energy Transfer, Humans, Protein Interaction Domains and Motifs, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
gold