Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2008 . Peer-reviewed
Data sources: Crossref
Development
Article . 2008
versions View all 2 versions

Six3inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon

Authors: Guillermo Oliver; Oleg Lagutin; Alfonso Lavado;

Six3inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon

Abstract

The homeobox gene Six3 represses Wnt1 transcription. It is also required in the anterior neural plate for the development of the mammalian rostral forebrain. We have now determined that at the 15- to 17-somite stage, the prospective diencephalon is the most-anterior structure in the Six3-null brain, and Wnt1 expression is anteriorly expanded. Consequently, the brain caudalizes, and at the 22- to 24-somite stage, the prospective thalamic territory is the most-anterior structure. At around E11.0, the pretectum replaces this structure. Analysis of Six3;Wnt1 double-null mice revealed that Six3-mediated repression of Wnt1 is necessary for the formation of the rostral diencephalon and that Six3 activity is required for the formation of the telencephalon. These results provide insight into the mechanisms that establish anteroposterior identity in the developing mammalian brain.

Related Organizations
Keywords

Homeodomain Proteins, Telencephalon, Gene Expression Regulation, Developmental, Homeobox Protein SIX3, Nerve Tissue Proteins, Embryo, Mammalian, Repressor Proteins, Wnt Proteins, Mice, Somites, Thalamus, Animals, RNA, Messenger, Diencephalon, Eye Proteins, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%
bronze