<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages
doi: 10.1038/nn1832
pmid: 17220884
Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages
An essential feature of the organization and function of the vertebrate and insect olfactory systems is the generation of a variety of olfactory receptor neurons (ORNs) that have different specificities in regard to both odorant receptor expression and axonal targeting. Yet the underlying mechanisms that generate this neuronal diversity remain elusive. Here we demonstrate that the Notch signal is involved in the diversification of ORNs in Drosophila melanogaster. A systematic clonal analysis showed that a cluster of ORNs housed in each sensillum were differentiated into two classes, depending on the level of Notch activity in their sibling precursors. Notably, ORNs of different classes segregated their axonal projections into distinct domains in the antennal lobes. In addition, both the odorant receptor expression and the axonal targeting of ORNs were specified according to their Notch-mediated identities. Thus, Notch signaling contributes to the diversification of ORNs, thereby regulating multiple developmental events that establish the olfactory map in Drosophila.
Receptors, Notch, Growth Cones, Brain, Gene Expression Regulation, Developmental, Nuclear Proteins, Cell Differentiation, Olfactory Pathways, Receptors, Odorant, Olfactory Receptor Neurons, Juvenile Hormones, Drosophila melanogaster, Mutation, Animals, Drosophila Proteins, Cell Lineage, Signal Transduction
Receptors, Notch, Growth Cones, Brain, Gene Expression Regulation, Developmental, Nuclear Proteins, Cell Differentiation, Olfactory Pathways, Receptors, Odorant, Olfactory Receptor Neurons, Juvenile Hormones, Drosophila melanogaster, Mutation, Animals, Drosophila Proteins, Cell Lineage, Signal Transduction
24 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).113 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
