Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Molecular Determinants of the Sensory and Motor Neuron-derived Factor Insertion into Plasma Membrane

Authors: Hugo, Cabedo; Carolina, Luna; Asia M, Fernandez; Juana, Gallar; Antonio, Ferrer-Montiel;

Molecular Determinants of the Sensory and Motor Neuron-derived Factor Insertion into Plasma Membrane

Abstract

The sensory and motor neuron-derived factor (SMDF) is a type III neuregulin that regulates development and proliferation of Schwann cells. Although SMDF has been shown to be a type II protein, the molecular determinants of membrane biogenesis, insertion, and topology remain elusive. Here we used heterologous expression of a yellow fluorescent protein-SMDF fusion protein along with a stepwise deletion strategy to show that the apolar/uncharged segment (Ile(76)-Val(100)) acts as an internal, uncleaved membrane insertion signal that defines the topology of the protein. Unexpectedly, removal of the transmembrane segment (TM) did not eliminate completely membrane association of C-terminal fragments. TM-deleted fusion proteins, bearing the amino acid segment (Ser(283)-Glu(296)) located downstream to the epidermal growth factor-like motif, strongly interacted with plasma membrane fractions. However, synthetic peptides patterned after this segment did not insert into artificial lipid vesicles, suggesting that membrane interaction of the SMDF C terminus may be the result of a post-translational modification. Subcellular localization studies demonstrated that the 40-kDa form, but not the 83-kDa form, of SMDF was segregated into lipid rafts. Deletion of the N-terminal TM did not affect the interaction of the protein with these lipid microdomains. In contrast, association with membrane rafts was abolished completely by truncation of the protein C terminus. Collectively, these findings are consistent with a topological model for SMDF in which the protein associates with the plasma membrane through both the TM and the C-terminal end domains resembling the topology of other type III neuregulins. The TM defines its characteristic type II membrane topology, whereas the C terminus is a newly recognized anchoring motif that determines its compartmentalization into lipid rafts. The differential localization of the 40- and 83-kDa forms of the neuregulin into rafts and non-raft domains implies a central role in the protein biological activity.

Keywords

Binding Sites, DNA, Complementary, Microscopy, Confocal, Calorimetry, Differential Scanning, Octoxynol, Blotting, Western, Cell Membrane, Molecular Sequence Data, Immunohistochemistry, Models, Biological, Luminescent Proteins, Bacterial Proteins, COS Cells, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, Phosphorylation, Gene Deletion, Neuregulins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 37
    download downloads 57
  • 37
    views
    57
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
24
Average
Top 10%
Top 10%
37
57
gold