Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Gene structure and functional properties of mouse CRTH2, a prostaglandin D2 receptor

Authors: Kazuya Tanaka; Masataka Nakamura; Kiyoshi Takatsu; Hiroyuki Abe; Hiroyuki Abe; Hiroyuki Hirai; Kazuo Sugamura; +1 Authors

Gene structure and functional properties of mouse CRTH2, a prostaglandin D2 receptor

Abstract

CRTH2, the second receptor for prostaglandin D(2) (PGD(2)), is thought to play a role in allergic inflammations through the induction of chemotactic migration and/or the activation of Th2, eosinophils, and basophils, in humans. We previously identified the mouse CRTH2 homolog of human CRTH2 and suggest that animal models would provide a clear understanding on the precise function of CRTH2 in allergic disorders. To this end we have confirmed that mouse CRTH2 is similar in gene structure to human CRTH2 and revealed that mouse CRTH2 is predominantly expressed in the eosinophils derived from IL-5-transgenic mice. Moreover, mouse CRTH2 harbors the ability to bind PGD(2) with high affinity and intracellular Ca(2+) mobilization in a Gi-dependent manner and chemotactic responses in several transfected cell lines. The results demonstrated here indicate that mouse CRTH2 is the functional ortholog of human CRTH2 and paves the way for future analysis of the in vivo functions of CRTH2.

Keywords

Mice, Gene Components, Cell Movement, Prostaglandin D2, Receptors, Prostaglandin, Animals, Humans, Calcium, Receptors, Immunologic, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Average
Top 10%
Top 10%