Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

A mis-expression study of factors affecting Drosophila PNS cell identity

Authors: Fergal, O'Farrell; Per, Kylsten;

A mis-expression study of factors affecting Drosophila PNS cell identity

Abstract

Drosophila PNS sense organs arise from single sensory organ precursor (SOP) cells through a series of asymmetric divisions. In a mis-expression screen for factors affecting PNS development, we identified string and dappled as being important for the proper formation of adult external sensory (ES) organs. string is a G2 regulator. dappled has no described function but is implicated in tumorigenesis. The mis-expression effect from string was analysed using timed over expression during adult ES-organ and, for comparison, embryonic Chordotonal (Ch) organ formation. Surprisingly, string mis-expression prior to SOP division gave the greatest effect in both systems. In adult ES-organs, this lead to cell fate transformations producing structural cells, whilst in the embryo organs were lost, hence differences within the lineages exist. Mis-expression of dappled, lead to loss and duplications of entire organs in both systems, potentially affecting SOP specification, in addition to affecting neuronal guidance.

Related Organizations
Keywords

Male, Organogenesis, Cell Cycle, Sense Organs, Cell Cycle Proteins, Drosophila melanogaster, Metalloproteins, Mutation, Peripheral Nervous System, Animals, Drosophila Proteins, Female, Protein Tyrosine Phosphatases, Carrier Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average