DNA damage-induced gene expression inSaccharomyces cerevisiae
pmid: 18616603
DNA damage-induced gene expression inSaccharomyces cerevisiae
After exposure to DNA-damaging agents, both prokaryotic and eukaryotic cells activate stress responses that result in specific alterations in patterns of gene expression. Bacteria such as Escherichia coli possess both lesion-specific responses as well as an SOS response to general DNA damage, and the molecular mechanisms of these responses are well studied. Mechanisms of DNA damage response in lower eukaryotes such as Saccharomyces cerevisiae are apparently different from those in bacteria. It becomes clear that many DNA damage-inducible genes are coregulated by the cell-cycle checkpoint, a signal transduction cascade that coordinates replication, repair, transcription and cell-cycle progression. On the other hand, among several well-characterized yeast DNA damage-inducible genes, their effectors and mechanisms of transcriptional regulation are rather different. This review attempts to summarize the current state of knowledge on the molecular mechanisms of DNA damage-induced transcriptional regulation in this model lower eukaryotic microorganism.
- University of Saskatchewan Canada
Saccharomyces cerevisiae Proteins, Transcription, Genetic, Gene Expression Regulation, Fungal, Saccharomyces cerevisiae, SOS Response, Genetics, DNA Damage, Signal Transduction
Saccharomyces cerevisiae Proteins, Transcription, Genetic, Gene Expression Regulation, Fungal, Saccharomyces cerevisiae, SOS Response, Genetics, DNA Damage, Signal Transduction
49 Research products, page 1 of 5
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).53 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
