Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Ablation of Ca2+ Channel β3 Subunit Leads to Enhanced N-Methyl-d-aspartate Receptor-dependent Long Term Potentiation and Improved Long Term Memory

Authors: Daejong, Jeon; Inseon, Song; William, Guido; Karam, Kim; Eunjoon, Kim; Uhtaek, Oh; Hee-Sup, Shin;

Ablation of Ca2+ Channel β3 Subunit Leads to Enhanced N-Methyl-d-aspartate Receptor-dependent Long Term Potentiation and Improved Long Term Memory

Abstract

The beta subunits of voltage-dependent Ca(2+) channels (VDCCs) have marked effects on the properties of the pore-forming alpha(1) subunits of VDCCs, including surface expression of channel complexes and modification of voltage-dependent kinetics. Among the four different beta subunits, the beta(3) subunit (Ca(v)beta3) is abundantly expressed in the hippocampus. However, the role of Ca(v)beta3 in hippocampal physiology and function in vivo has never been examined. Here, we investigated Ca(v)beta3-deficient mice for hippocampus-dependent learning and memory and synaptic plasticity at hippocampal CA3-CA1 synapses. Interestingly, the mutant mice exhibited enhanced performance in several hippocampus-dependent learning and memory tasks. However, electrophysiological studies revealed no alteration in the Ca(2+) current density, the frequency and amplitude of miniature excitatory postsynaptic currents, and the basal synaptic transmission in the mutant hippocampus. On the other hand, however, N-methyl-d-aspartate receptor (NMDAR)-mediated synaptic currents and NMDAR-dependent long term potentiation were significantly increased in the mutant. Protein blot analysis showed a slight increase in the level of NMDAR-2B in the mutant hippocampus. Our results suggest a possibility that, unrelated to VDCCs regulation, Ca(v)beta3 negatively regulates the NMDAR activity in the hippocampus and thus activity-dependent synaptic plasticity and cognitive behaviors in the mouse.

Keywords

571, 572, Calcium Channels, L-Type, Pyramidal Cells, Long-Term Potentiation, Recognition, Psychology, Fear, Hippocampus, Receptors, N-Methyl-D-Aspartate, Synaptic Transmission, Membrane Potentials, Mice, Inbred C57BL, Food Preferences, Mice, Protein Subunits, Memory, Animals, Ion Channel Gating

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold