Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression

Authors: Foster, Steven S.; De, Saurav; Johnson, Linda K.; Petrini, John H.J.; Stracker, Travis H.;

Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression

Abstract

The DNA damage response comprises DNA repair, cell-cycle checkpoint control, and DNA damage-induced apoptosis that collectively promote genomic integrity and suppress tumorigenesis. Previously, we have shown that the Chk2 kinase functions independently of the Mre11 complex (Mre11, Rad50, and Nbs1) and ATM in apoptosis and suppresses tumorigenesis resulting from hypomorphic alleles of Mre11 or Nbs1 . Based on this work, we have proposed that Chk2 limits the oncogenic potential of replication-associated DNA damage. Here we further address the role of Chk2 and damage-induced apoptosis in suppressing the oncogenic potential of chromosome breaks. We show that loss of Chk2 or a mutation in p53 (R172P), which selectively impairs its function in apoptosis, rescued the lethality of mice lacking Lig4, a ligase required for nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks in G0/G1. In contrast to Lig4 −/− p53 −/− mice, Lig4 −/− Chk2 −/− and Lig4 −/− p53 R172P/R172P mice were not prone to organ-specific, rapid tumorigenesis. Although the severe NHEJ deficiency of Lig4 −/− was a less potent initiator of tumorigenesis in the p53 R172P/R172P and Chk2 −/− backgrounds, where p53 cell-cycle functions are largely intact, even mild defects in the intra-S and G2/M checkpoints caused by mutations in Nbs1 are sufficient to influence malignancy in p53 R172P/R172P mice. We conclude that the oncogenic potential of double-strand breaks resulting from NHEJ deficiency is highly restricted by nonapoptotic functions of p53, such as the G1/S checkpoint or senescence, suggesting that the particular facets of the DNA damage response required for tumor suppression are dictated by the proliferative status of the tumor-initiating cell.

Keywords

Mice, DNA Repair, Cell Cycle, Mutation, 610, Animals, Apoptosis, Neoplasms, Experimental, Genes, p53, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
bronze