Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 2002 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Lipopolysaccharide-Induced Leukocyte-Endothelial Cell Interactions: A Role for CD14 Versus Toll-Like Receptor 4 Within Microvessels

Authors: Paul Kubes; Sanna M. Goyert; Graciela Andonegui;

Lipopolysaccharide-Induced Leukocyte-Endothelial Cell Interactions: A Role for CD14 Versus Toll-Like Receptor 4 Within Microvessels

Abstract

Abstract The objective of this study was to systematically assess leukocyte-endothelial cell interactions in vivo in response to LPS in CD14-deficient (CD14−/−) and Toll-like receptor 4-deficient (TLR4d; C3H/HeJ) mice. Local injection of LPS (0.05 μg/kg) into muscle at a concentration that did not cause systemic effects produced a significant reduction in the speed with which leukocytes roll and a substantial increase in leukocyte adhesion and emigration 4 h postinjection. There was no response to LPS in the muscle microvasculature of CD14−/− mice or TLR4d animals. Systemic LPS induced leukopenia and significant sequestration of neutrophils in lungs in wild-type mice but not in CD14−/− or TLR4d mice. P-selectin expression was examined in numerous mouse organs using a dual radiolabeling mAb technique. The results revealed a 20- to 50-fold increase in P-selectin expression in response to LPS in all wild-type tissues examined but no response in any TLR4d tissues. Surprisingly, there was consistently a partial, significant increase in P-selectin expression in numerous microvasculatures including skin and pancreas, but no increase in P-selectin was detected in lung, muscle, and other organs in CD14−/− mice in response to LPS. Next, the skin and muscle microcirculation were visualized using intravital microscopy after systemic LPS treatment, and the results confirmed a CD14-independent mechanism of leukocyte sequestration in skin but not muscle. In summary, our results suggest that the LPS-induced leukocyte sequestration to some tissues is entirely dependent on both CD14 and TLR4 but there are CD14-independent, TLR4-dependent endothelial cell responses in some microvascular beds.

Related Organizations
Keywords

Lipopolysaccharides, Mice, Knockout, Mice, Inbred BALB C, Mice, Inbred C3H, Membrane Glycoproteins, Microcirculation, Toll-Like Receptors, Lipopolysaccharide Receptors, Receptors, Cell Surface, Cell Communication, Toll-Like Receptor 4, Mice, P-Selectin, Leukocytes, Animals, Drosophila Proteins, Endothelium, Vascular, Muscle, Skeletal, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 10%
Top 10%
bronze