Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article . 2008 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
The Plant Cell
Article . 2009
versions View all 2 versions

NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis

Authors: Mayuki, Tanaka; Ian S, Wallace; Junpei, Takano; Daniel M, Roberts; Toru, Fujiwara;

NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis

Abstract

Abstract Boron (B) in soil is taken up by roots through NIP5;1, a boric acid channel, and is loaded into the xylem by BOR1, a borate exporter. Here, the function of Arabidopsis thaliana NIP6;1, the most similar gene to NIP5;1, was studied. NIP6;1 facilitates the rapid permeation of boric acid across the membrane but is completely impermeable to water. NIP6;1 transcript accumulation is elevated in response to B deprivation in shoots but not in roots. NIP6;1 promoter–β-glucuronidase is predominantly expressed in nodal regions of shoots, especially the phloem region of vascular tissues. Three independently identified T-DNA insertion lines for the NIP6;1 gene exhibited reduced expansion of young rosette leaves only under low-B conditions. B concentrations are reduced in young rosette leaves but not in the old leaves of these mutants. Taken together, these data strongly suggest that NIP6;1 is a boric acid channel required for proper distribution of boric acid, particularly among young developing shoot tissues. We propose that NIP6;1 is involved in xylem–phloem transfer of boric acid at the nodal regions and that the water-tight property of NIP6;1 is important for this function. It is proposed that during evolution, NIP5;1 and NIP6;1 were diversified in terms of both the specificity of their expression in plant tissues and their water permeation properties, while maintaining their ability to be induced under low B and their boric acid transport activities.

Keywords

Arabidopsis Proteins, Recombinant Fusion Proteins, Xenopus, Cell Membrane, Arabidopsis, Membrane Transport Proteins, Water, Biological Transport, Phloem, Plant Roots, Permeability, Plant Leaves, Mutagenesis, Insertional, Oocytes, Animals, RNA, Messenger, Promoter Regions, Genetic, Plant Shoots, Boron, Glucuronidase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    273
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
273
Top 1%
Top 1%
Top 1%
hybrid