Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemistry (Moscow...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemistry (Moscow)
Article . 2004 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions

Temperature Dependent Protease Activity and Structural Properties of Human HtrA2 Protease

Authors: Xuefeng, Zhang; Zengyi, Chang;

Temperature Dependent Protease Activity and Structural Properties of Human HtrA2 Protease

Abstract

Human HtrA2 belongs to a new class of oligomeric serine protease, members of which are found in most organisms. Mature HtrA2 is released from mitochondria into the cytosol in response to apoptotic stimuli. In this report, the effect of temperature on proteolytic activity of HtrA2 and related structural properties were investigated. In the range from 25 to 55 degrees C, the proteolytic activity of HtrA2 rapidly increased with temperature, and it drastically decreased at and over 60 degrees C. Structural analysis using far-UV CD spectroscopy and gel filtration revealed no significant change in the secondary structure of HtrA2 from 25 to 70 degrees C, or in the oligomeric size between 25 and 55 degrees C. However, a significant change at the tertiary level, as examined using near-UV CD, was observed for HtrA2 in the range from 25 to 60 degrees C. Differential scanning calorimetry indicated that HtrA2 exhibits a thermal transition beginning at around 61 degrees C. The fluorescence intensity of ANS interacting with HtrA2 decreased with increasing temperature. HtrA2 was found to be able to complement DegP function at 44 degrees C, indicating that HtrA2 could have protective functions in mitochondria.

Related Organizations
Keywords

DNA, Complementary, Protein Conformation, Circular Dichroism, Genetic Complementation Test, Serine Endopeptidases, Temperature, Gene Expression, High-Temperature Requirement A Serine Peptidase 2, Mitochondrial Proteins, Kinetics, Structure-Activity Relationship, Spectrometry, Fluorescence, Escherichia coli, Humans, Periplasmic Proteins, Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average