Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus.
Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus.
Abstract We have inserted a yeast nuclear DNA fragment bearing the TRP1 gene and its associated origin of DNA replication, ARS1, into the functional mitochondrial chromosome of a strain carrying a chromosomal trp1 deletion. TRP1 was not phenotypically expressed within the organelle. However, this Trp- strain readily gave rise to respiratory competent Trp+ clones that contained the TRP1/ARS1 fragment, associated with portions of mitochondrial DNA (mtDNA), replicating in their nuclei. Thus the Trp+ clones arose as a result of DNA escaping from mitochondria and migrating to the nucleus. We have isolated 21 nuclear mutants in which the rate of mtDNA escape is increased by screening for increased rates of papillation to Trp+. All 21 mutations were recessive and fell into six complementation groups, termed YME1-YME6. In addition to increasing the rate of mtDNA escape, yme1 mutations also caused a heat-sensitive respiratory deficient phenotype at 37 degrees and a cold-sensitive growth defect on complete glucose medium at 14 degrees. While the other yme mutations had no detectable growth phenotypes, synergistic interactions were observed in two double mutant combinations: a yme1, yme2 double mutant failed to respire at 30 degrees and a yme4, yme6 double mutant failed to respire at all temperatures tested. None of the respiratory defects were caused by loss of functional mtDNA. These findings suggest that yme1, yme2, yme4 and yme6 mutations alter mitochondrial functions and thereby lead to an increased rate of DNA escape from the organelle.
- University of Wyoming United States
Cell Nucleus, DNA Replication, Base Sequence, Genes, Fungal, Molecular Sequence Data, Mutation, Saccharomyces cerevisiae, DNA, Fungal, DNA, Mitochondrial, Mitochondria
Cell Nucleus, DNA Replication, Base Sequence, Genes, Fungal, Molecular Sequence Data, Mutation, Saccharomyces cerevisiae, DNA, Fungal, DNA, Mitochondrial, Mitochondria
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).150 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
