Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 2006
versions View all 2 versions

Six1 and Six4 promote survival of sensory neurons during early trigeminal gangliogenesis

Authors: Yoshiyuki Konishi; Yoichiro Iwakura; Kiyoshi Kawakami; Keiko Ikeda;

Six1 and Six4 promote survival of sensory neurons during early trigeminal gangliogenesis

Abstract

Survival of sensory neurons is tightly regulated in cell-type and developmental-stage-specific manners. The transcriptional regulatory mechanisms underlying this regulation remain to be elucidated. In the present study, we investigated the role of Six1 and Six4 in the development of trigeminal ganglia. Abundant expression of Six1 and Six4 was noted in sensory neurons during early trigeminal gangliogenesis. Loss of both Six1 and Six4 in mice caused severe defects in the trigeminal ganglia, wherein massive apoptosis accompanied by activation of caspase-3 was observed at early but not late stages of gangliogenesis. In Six1(-/-)Six4(-/-) mice, trigeminal sensory neurons were generated, but showed reduced expression of Bcl-x compared with the wild-type mice. Accordingly, neurons from the deficient mice could not survive in culture even in the presence of neurotrophins. Our results suggest a cell-intrinsic role of Six1 and Six4 in the survival of early-generated trigeminal sensory neurons.

Keywords

Homeodomain Proteins, Mice, Knockout, Cell Survival, Immunohistochemistry, Mice, Inbred C57BL, Mice, Trigeminal Ganglion, Animals, Nerve Growth Factors, Neurons, Afferent, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%