Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Lipid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Lipid Research
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Lipid Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Lipid Research
Article . 2002
Data sources: DOAJ
versions View all 3 versions

Cholesterol gallstone formation in overweight mice establishes that obesity per se is not linked directly to cholelithiasis risk

Authors: Bouchard, G; Johnson, D; Carver, T; Paigen, B; Carey, M C;

Cholesterol gallstone formation in overweight mice establishes that obesity per se is not linked directly to cholelithiasis risk

Abstract

The relationship between obesity and cholesterol cholelithiasis is not well understood at physiologic or genetic levels. To clarify whether obesity per se leads to increased prevalence of cholelithiasis, we examined cholesterol gallstone susceptibility in three polygenic (KK/H1J, NON/LtJ, NOD/LtJ) and five monogenic [carboxypeptidase E (Cpe (fat)), agouti yellow (A(y)), tubby (tub), leptin (Lep(ob)), leptin receptor (Lepr (db))] murine models of obesity during ingestion of a lithogenic diet containing dairy fat, cholesterol, and cholic acid. At 8 weeks on the diet, one strain of polygenic obese mice was resistant whereas the others revealed low or intermediate prevalence rates of cholelithiasis. Monogenic obese mice showed distinct patterns with either high or low gallstone prevalence rates depending upon the mutation. Dysfunction of the leptin axis, as evidenced by the Lep(ob) and the Lepr (db) mutations, markedly reduced gallstone formation in a genetically susceptible background strain, indicating that in mice with this genetic background, physiologic leptin homeostasis is a requisite for cholesterol cholelithogenesis. In contrast, the Cpe (fat) mutation enhanced the prevalence of cholelithiasis markedly when compared with the background strain. Since CPE converts many prohormones to hormones, a deficiency of biologically active cholecystokinin is a likely contributor to enhanced susceptibility to cholelithiasis through compromising gallbladder contractility and small intestinal motility. Because some murine models of obesity increased, whereas others decreased cholesterol gallstone susceptibility, we establish that cholesterol cholelithiasis in mice is not simply a secondary consequence of obesity per se. Rather, specific genes and distinct pathophysiological pathways are responsible for the shared susceptibility to both of these common diseases.

Country
United States
Related Organizations
Keywords

monogenic and polygenic obesity genes, Leptin, Male, 610, Mice, Obese, carboxypeptidase E, QD415-436, leptin, Biochemistry, Mice, Cholelithiasis, Animals, Bile, Genetic Predisposition to Disease, Obesity, leptin receptor, Mice-Obese, Genetic-Predisposition-to-Disease, Gallbladder, Lipids, cholecystokinin, Disease Models, Animal, Cholesterol, Liver, cholesterol saturation index, Female, Disease-Models-Animal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Average
Top 10%
Top 10%
gold