Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioscience Biotechno...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioscience Biotechnology and Biochemistry
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Effects of Iodine on Global Gene Expression inSaccharomyces cerevisiae

Authors: Emiko, Kitagawa; Kuniko, Akama; Hitoshi, Iwahashi;

Effects of Iodine on Global Gene Expression inSaccharomyces cerevisiae

Abstract

It is well documented that iodine kills microorganisms with a broad spectrum, but a systematic study of its mechanism of action has not yet been reported. Here we found the action of iodine on gene expression level, using the yeast Saccharomyces cerevisiae with a DNA microarray. It was found that, like antimicrobial activity, iodine causes an immediate and dose-dependent (0.5 mM, 0.75 mM and 1 mM) transcriptional alteration in yeast cells. The effects of iodine continued after the first immediate response. Genes for c-compound and carbohydrate metabolism, for energy, and for cell rescue were continuously up-regulated. On the other hand, genes related to protein fate were induced especially at 0.5 h. The gene expression profile at 0.5 h was significantly different from that of a longer iodine exposed condition. The main reaction at 0.5 h after iodine addition might be due to oxidative toxicity, and the profile at 0.5 h was similar to that of an agricultural bactericide.

Keywords

Reverse Transcriptase Polymerase Chain Reaction, Genes, Fungal, Saccharomyces cerevisiae, Culture Media, Up-Regulation, Oxidative Stress, Gene Expression Regulation, Fungal, Multigene Family, Carbohydrate Metabolism, Cluster Analysis, DNA, Fungal, Energy Metabolism, DNA Primers, Iodine, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
bronze