Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cbfa1 Is a Positive Regulatory Factor in Chondrocyte Maturation

Authors: H, Enomoto; M, Enomoto-Iwamoto; M, Iwamoto; S, Nomura; M, Himeno; Y, Kitamura; T, Kishimoto; +1 Authors

Cbfa1 Is a Positive Regulatory Factor in Chondrocyte Maturation

Abstract

Cbfa1 is a transcription factor that belongs to the runt domain gene family. Cbfa1-deficient mice showed a complete lack of bone formation due to the maturational arrest of osteoblasts, demonstrating that Cbfa1 is an essential factor for osteoblast differentiation. Further, chondrocyte maturation was severely disturbed in Cbfa1-deficient mice. In this study, we examined the possibility that Cbfa1 is also involved in the regulation of chondrocyte differentiation. mRNAs for both Cbfa1 isotypes, type I Cbfa1 (Pebp2alphaA/Cbfa1) and type II Cbfa1 (Osf2/Cbfa1 or til-1), which are different in N-terminal domain, were expressed in terminal hypertrophic chondrocytes as well as osteoblasts. In addition, mRNA for type I Cbfa1 was expressed in other hypertrophic chondrocytes and prehypertrophic chondropcytes. In a chondrogenic cell line, ATDC5, the expression of type I Cbfa1 was elevated prior to differentiation to the hypertrophic phenotype, which is characterized by type X collagen expression. Treatment with antisense oligonucleotides for type I Cbfa1 severely reduced type X collagen expression in ATDC5 cells. Retrovirally forced expression of either type I or type II Cbfa1 in chick immature chondrocytes induced type X collagen and MMP13 expression, alkaline phosphatase activity, and extensive cartilage-matrix mineralization. These results indicate that Cbfa1 is an important regulatory factor in chondrocyte maturation.

Related Organizations
Keywords

DNA, Complementary, Osteoblasts, Tibia, Cell Differentiation, Core Binding Factor Alpha 1 Subunit, Chick Embryo, Hypertrophy, Oligonucleotides, Antisense, Neoplasm Proteins, DNA-Binding Proteins, Mice, Chondrocytes, Phenotype, Transcription Factor AP-2, Animals, RNA, Messenger, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    368
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
368
Top 1%
Top 1%
Top 1%
gold