Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nephron Physiologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nephron Physiology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Increased Acid Load and Deletion of AE1 Increase Slc26a7 Expression

Authors: Xuming Sun; Snezana Petrovic;

Increased Acid Load and Deletion of AE1 Increase Slc26a7 Expression

Abstract

<i>Background/Aims:</i> Slc26a7 is a member of a family of anion transport proteins, Solute-Linked Carrier 26 (Slc26). Slc26a7, which can mediate Cl<sup>–</sup>/HCO3– exchange, is expressed in the acid-secreting, A-intercalated cells of the kidney collecting duct. On the basolateral side of the A-intercalated cells, Slc26a7 co-localizes with the anion exchanger 1 (AE1), a Cl<sup>–</sup>/HCO3– exchanger that mediates bicarbonate reabsorption in the collecting duct. <i>Methods:</i> To test if Slc26a7 is involved in acid-base regulation, as its localization and function suggest, we examined the effect of acid loading and deletion of AE1 on Slc26a7 expression with quantitative real-time RT-PCR and Western blotting. <i>Results:</i> Four days of acid loading increased Slc26a7 mRNA expression in the kidney inner medulla by 57% (n = 6 acid loaded vs. n = 6 control rats; p < 0.001), whereas mRNA expression in the outer medulla and the cortex did not change. Western blotting analysis demonstrated increased Slc26a7 protein expression in both outer (140%) and inner medulla (50%) in acid-loaded animals (n = 3) compared to controls (n = 3; p < 0.05). The expression of Slc26a7 mRNA was increased by 66% in the kidneys of AE1 knockout mice (n = 5) compared to the wild types (n = 5, p < 0.001). The increase in Slc26a7 mRNA correlated with a twofold increase in protein expression (p < 0.05). <i>Conclusion:</i>We suggest that the increase in Slc26a7 expression caused by acid challenge and deletion of AE1 represents an adaptive response, indicating that Slc26a7 contributes to the regulation of acid-base balance by the kidney.

Related Organizations
Keywords

Acid-Base Equilibrium, Mice, Knockout, Kidney Medulla, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Ammonium Chloride, Antiporters, Rats, Up-Regulation, Rats, Sprague-Dawley, Disease Models, Animal, Mice, Sulfate Transporters, Anion Exchange Protein 1, Erythrocyte, Animals, Female, Chloride-Bicarbonate Antiporters, RNA, Messenger, Acidosis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%