Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Cell
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

The TDRD9-MIWI2 Complex Is Essential for piRNA-Mediated Retrotransposon Silencing in the Mouse Male Germline

Authors: Norio Nakatsuji; Gen Kondoh; Shinichiro Chuma; Tsutomu Suzuki; Hiroyuki Sasaki; Kenichiro Hata; Takeshi Chujo; +12 Authors

The TDRD9-MIWI2 Complex Is Essential for piRNA-Mediated Retrotransposon Silencing in the Mouse Male Germline

Abstract

Host-defense mechanisms against transposable elements are critical to protect the genome information. Here we show that tudor-domain containing 9 (Tdrd9) is essential for silencing Line-1 retrotransposon in the mouse male germline. Tdrd9 encodes an ATPase/DExH-type helicase, and its mutation causes male sterility showing meiotic failure. In Tdrd9 mutants, Line-1 was highly activated and piwi-interacting small RNAs (piRNAs) corresponding to Line-1 were increased, suggesting that feedforward amplification operates in the mutant. In fetal testes, Tdrd9 mutation causes Line-1 desilencing and an aberrant piRNA profile in prospermatogonia, followed by cognate DNA demethylation. TDRD9 complexes with MIWI2 with distinct compartmentalization in processing bodies, and this TDRD9-MIWI2 localization is regulated by MILI and TDRD1 residing at intermitochondrial cement. Our results identify TDRD9 as a functional partner of MIWI2 and indicate that the tudor-piwi association is a conserved feature, while two separate axes, TDRD9-MIWI2 and TDRD1-MILI, cooperate nonredundantly in the piwi-small RNA pathway in the mouse male germline.

Keywords

Male, DNA Helicases, Proteins, RNA-Binding Proteins, DEVBIO, Protein Structure, Tertiary, Chromosome Pairing, Meiosis, Mice, Long Interspersed Nucleotide Elements, Spermatocytes, Argonaute Proteins, RNA, Animals, Female, Amino Acid Sequence, RNA, Small Interfering, Infertility, Male, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    304
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
304
Top 1%
Top 10%
Top 1%
hybrid