Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Proper Organization of Microtubule Minus Ends Is Needed for Midzone Stability and Cytokinesis

Authors: Cai, Shang; Weaver, Lesley N.; Ems-McClung, Stephanie C.; Walczak, Claire E.;

Proper Organization of Microtubule Minus Ends Is Needed for Midzone Stability and Cytokinesis

Abstract

Successful cytokinesis is critical for maintaining genome stability and requires the assembly of a robust central spindle to specify the cleavage furrow position, to prevent separated chromosomes from coming back together, and to contribute to midbody abscission. A proper central spindle is assembled and maintained by a number of microtubule-associated and molecular motor proteins that sort microtubules into bundles with their plus ends overlapping at the center. The mechanisms by which different factors organize the central spindle microtubules remain unclear. We found that perturbation of the minus-end-directed Kinesin-14 HSET increased the frequency of polyploid cells, which resulted from a failure in cytokinesis. In addition, HSET knockdown resulted in severe midzone microtubule organization, most notably at microtubule minus ends, as well as mislocalization of several midbody-associated proteins. Biochemical analysis showed that both human HSET and Xenopus XCTK2 cofractionated with the gamma-tubulin ring complexes on sucrose gradients and that XCTK2 associated with gamma-tubulin and Xgrip109 by immunoprecipitation. Our data reveal the novel finding that a minus-end-directed motor contributes to the organization and stability of the central spindle, which is needed for proper cytokinesis.

Related Organizations
Keywords

Oncogene Proteins, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Molecular Motor Proteins, Xenopus, Kinesins, Spindle Apparatus, Microtubules, Polyploidy, Tubulin, Animals, Humans, CELLBIO, Cytokinesis, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
hybrid