Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Metabolitesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Metabolites
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Metabolites
Article . 2022
Data sources: DOAJ
versions View all 5 versions

Elemental Analysis, Phytochemical Screening and Evaluation of Antioxidant, Antibacterial and Anticancer Activity of Pleurotus ostreatus through In Vitro and In Silico Approaches

Authors: Vartika Mishra; Sarika Tomar; Priyanka Yadav; Shraddha Vishwakarma; Mohan Prasad Singh;

Elemental Analysis, Phytochemical Screening and Evaluation of Antioxidant, Antibacterial and Anticancer Activity of Pleurotus ostreatus through In Vitro and In Silico Approaches

Abstract

Oyster mushrooms form an integral part of many diets owing to their characteristic aroma, delicious taste and nutraceutical value. In this study, we examined oyster mushrooms by direct arc optical emission spectroscopy for the presence of various biologically important elements. Furthermore, we screened phytochemicals present in Pleurotus ostreatus by applying GC-MS. Additionally, the antioxidant, antibacterial and anticancer activities of the ethanolic extract of Pleurotus ostreatus were studied. Moreover, we docked the phytochemicals and examined their binding affinities with EGFR, PR and NF-κB proteins, which are overexpressed in breast cancer. The elemental analysis showed the presence of Fe, K, Na, Ca, Mg, Cr and Sr in the spectrum. Moreover, GC-MS data revealed the presence of 32 biologically active compounds in oyster mushrooms. The ethanolic extract displayed remarkable free radical scavenging activity (~50%) against DPPH. The mushroom has shown promising antibacterial activity against both Gram-positive (S. aureus) and Gram-negative bacteria (Pseudomonasaeruginosa, Proteus vulgaris and Proteus mirabilis). The present study also revealed that oyster mushrooms possess significant anticancer activity. The ethanolic extract inhibited the growth and proliferation of MCF-7 cells. It also induced cell shrinkage, membrane blebbing and nuclear fragmentation, resulting in apoptosis of malignant cells. The molecular docking analysis showed that ligand 15 (Linoleic acid ethyl ester), ligand 27 (Ergosta-5,7,9(11),22-tetraen-3-ol, (3. beta.,22E), ligand 28 (Stigmasta-5,22-dien-3-ol, acetate, (3. beta.,22Z), ligand 30 (Ergosta-5,7,22-Trien-3-Ol, (3. Beta.,22E) and ligand 32 (gamma. Sitosterol) exhibited better binding affinities with EGFR, PR and NF-κB proteins. This result provides a strong ground for confirmation of the in vitro anticancer effect of Pleurotus ostreatus. From the present in vitro and in silico studies, it can be concluded that Pleurotus ostreatus is a useful source of essential elements and reservoir of bioactive compounds which confer its significant antioxidant, antibacterial and anticancer properties.

Keywords

antibacterial, spectroscopy, bioactive compounds, antioxidant, oyster mushroom, anticancer, oyster mushroom; bioactive compounds; anticancer; antioxidant; antibacterial; spectroscopy; molecular docking, Microbiology, QR1-502, Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green
gold
Related to Research communities
Cancer Research