Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Article . 2004
Data sources: HAL-CEA
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

A screen for modifiers of RacGAP(84C) gain-of-function in theDrosophilaeye revealed the LIM kinase Cdi/TESK1 as a downstream effector of Rac1 during spermatogenesis

Authors: Raymond, Karine; Bergeret, Evelyne; Avet-Rochex, Amélie; Griffin-Shea, Ruth; Fauvarque, Marie-Odile;

A screen for modifiers of RacGAP(84C) gain-of-function in theDrosophilaeye revealed the LIM kinase Cdi/TESK1 as a downstream effector of Rac1 during spermatogenesis

Abstract

In Drosophila, RotundRacGAP/RacGAP(84C) is critical to retinal organisation and spermatogenesis. We show that eye-directed expression of RacGAP(84C) or its GTPase activating protein (GAP) domain induces a dominant rough eye phenotype which we used as a starting point in a gain-of-function screen to identify new partners of RacGAP(84C). Proteins known to function in Ras, Rho and Rac signalling were identified confirming the essential role of RacGAP(84C) in crosstalk between GTPases. Other potential RacGAP(84C) partners identified by the screen are implicated in signal transduction, DNA remodelling, cytoskeletal organisation, membrane trafficking and spermatogenesis. This latter class includes the serine/threonine kinase Center divider (Cdi), which is homologous to the human LIM kinase, Testis specific kinase 1 (TESK1), involved in cytoskeleton control through Cofilin phosphorylation. Eye-directed expression of cdi strongly suppressed the phenotypes induced by either RacGAP(84C) gain-of-function or by the dominant negative form of Rac1, Rac1N17. These results are consistent with Cdi being a specific downstream target of Rac1. We showed that Rac1 and cdi are both expressed in Drosophila testis and that homozygous Rac1 mutants exhibit poor fertility that is further reduced by introducing a cdi loss-of-function mutation in trans. Thus, results from a misexpression screen in the eye led us to a putative novel Rac1-Cdi-Cofilin pathway, regulated by RacGAP(84C), coordinating Drosophila spermatogenesis.

Country
France
Related Organizations
Keywords

Male, MESH: Drosophila, Genes, Insect, MESH: GTPase-Activating Proteins, Eye, Drosophila Proteins, MESH: Animals, Developmental, Phosphorylation, [SDV.BDD]Life Sciences [q-bio]/Development Biology, MESH: Organ Specificity, Cytoskeleton, MESH: Mutagenesis, Genes, Dominant, MESH: Testis, GTPase-Activating Proteins, Homozygote, Microfilament Proteins, Gene Expression Regulation, Developmental, MESH: Gene Expression Regulation, MESH: Genes, Actin Depolymerizing Factors, Organ Specificity, Drosophila, MESH: Spermatogenesis, MESH: Homozygote, 570, MESH: Drosophila Proteins, MESH: Eye, 610, Protein Serine-Threonine Kinases, MESH: Protein-Serine-Threonine Kinases, MESH: Microfilament Proteins, Insertional, MESH: Actin Depolymerizing Factors, [SDV.BDD] Life Sciences [q-bio]/Development Biology, MESH: Cytoskeleton, Animals, Dominant, MESH: Infertility, Spermatogenesis, Infertility, Male, MESH: Phosphorylation, MESH: rac1 GTP-Binding Protein, MESH: Male, Protein Structure, Tertiary, MESH: Protein Structure, Mutagenesis, Insertional, Insect, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Top 10%
bronze