Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 2002
versions View all 2 versions

Calcium channel γ subunits provide insights into the evolution of this gene family

Authors: P J, Chu; H M, Robertson; P M, Best;

Calcium channel γ subunits provide insights into the evolution of this gene family

Abstract

The gamma subunits of voltage-dependent calcium channels influence calcium current properties and may be involved in other physiological functions. Five distinct gamma subunits have been described from human and/or mouse. The first identified member of this group of proteins, gamma(1), is a component of the L-type calcium channel expressed in skeletal muscle. A second member, gamma(2), identified from the stargazer mouse regulates the targeting of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors to the postsynaptic membrane. We report here the identification of three novel gamma subunits from rat and mouse as well as the unidentified rat, mouse and human orthologs of the previously described subunits. Phylogenetic analysis of the 24 mammalian gamma subunits suggests the following relationship ((((gamma(2), gamma(3)), (gamma(4), gamma(8))), (gamma(5), gamma(7))), (gamma(1), gamma(6))) that indicates that they evolved from a common ancestral gamma subunit via gene duplication. Our analysis reveals that the novel gamma subunit gamma(6) most closely resembles gamma(1) and shares with it the lack of a PSD-95/DLG/ZO-1 (PDZ)-binding motif that is characteristic of most other gamma subunits. Rat gamma subunit mRNAs are expressed in multiple tissues including brain, heart, lung, and testis. The expression of gamma(1) mRNA and the long isoform of gamma(6) mRNA is most robust in skeletal muscle, while gamma(6) is also highly expressed in cardiac muscle. Based on our analysis of the molecular evolution, primary structure, and tissue distribution of the gamma subunits, we propose that gamma(1) and gamma(6) may share common physiological functions distinct from the other homologous gamma subunits.

Keywords

DNA, Complementary, Base Sequence, Models, Genetic, Molecular Sequence Data, Gene Expression, DNA, Introns, Rats, Evolution, Molecular, Rats, Sprague-Dawley, Mice, Protein Subunits, Multigene Family, Animals, Humans, Protein Isoforms, Amino Acid Sequence, Calcium Channels, RNA, Messenger, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 10%
Top 10%
Top 10%