Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://www.ncbi.nlm.nih.gov/pm...
Article . 2014 . Peer-reviewed
Data sources: SNSF P3 Database
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the National Academy of Sciences
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

Authors: Cornu, M.; Oppliger, W.; Albert, V.; Robitaille, A. M.; Trapani, F.; Quagliata, L.; Fuhrer, T.; +3 Authors

Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

Abstract

Significance The mammalian target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, growth factors, and cellular energy. Aberrant mTORC1 signaling is implicated in human diseases such as diabetes, obesity, and cancer. Our results reveal that ectopic mTORC1 activation in the liver controls the stress hormone fibroblast growth factor 21 (FGF21) in a peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent manner via glutamine depletion, which in turn affects whole-body behavior and metabolism. mTORC1 signaling correlates with FGF21 expression in human liver tumors, suggesting that our findings in mice may have physiological relevance in glutamine-addicted human cancers. Thus, treatment with the anticancer drug rapamycin may have beneficial effects by blocking tumor growth and by preventing deregulation of whole-body physiology due to FGF21 expression.

Country
Switzerland
Keywords

Male, Mice, Knockout, Mice, Inbred BALB C, Carcinoma, Hepatocellular, Mice, 129 Strain, Glutamine, Liver Neoplasms, Mechanistic Target of Rapamycin Complex 1, Motor Activity, Lipid Metabolism, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha, Body Temperature, Fibroblast Growth Factors, Mice, Inbred C57BL, Mice, Liver, Gene Knockdown Techniques, Multiprotein Complexes, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    141
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
141
Top 1%
Top 10%
Top 1%
bronze