Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2020.1...
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions

Evolutionary Emergence of First Animal Organisms Triggered by Environmental Mechano-Biochemical Marine Stimulation

Authors: Ngoc Minh Nguyen; Tatiana Merle; Florence Broders; Anne-Christine Brunet; Florian Sarron; Aditya Jha; Jean-Luc Genisson; +2 Authors

Evolutionary Emergence of First Animal Organisms Triggered by Environmental Mechano-Biochemical Marine Stimulation

Abstract

AbstractThe evolutionary emergence of the first animals is thought to have been intimately associated to the formation of a primitive endomesodermal gut (i.egastrulation) from ancestral multi-cellular spheres, blastulae, more than 700 million years ago. However, the biochemical cues having been at the origin of endomesoderm formation remain a mystery.Here we find that hydrodynamic mechanical strains developed by sea wavelets on pre-bilaterianNematostella vectensisand pre-metazoanChoanoeca flexarepresentatives, which common ancestor dates back to more than 700 million years ago, can trigger gastrulation in a Myo-II dependent mechanotransductive process. Gastrulation in turn induces endomesoderm first biochemical specification through the mechanical activation of the βcat pathway in pre-bilaterianNematostella vectensis, like in Drosophila and zebrafish embryos, which common ancestor dates back to 600-700 million years ago.These observations converge to animal emergence that has been mechanotransductively triggered by wavelet mechanical strains on the sea-shore in multicellular choanoflagellates through Myo-II more than 700 million years ago, a process achieved in first metazoan through mechanosensitive Y654-containing βcat evolutionary emergence found as conserved in all metazoan.One sentence summaryMarine hydrodynamic strains have activated first gastric organ formation from ancestral pre-animal cell colonies.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid