MRS Proceedings
Article . 2006 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
Materials Discovery by Crystal Growth
NSF| Synthesis of New Perovskite Related Oxides ,
NSF| Synthesis of New Platinum Group Metal Oxides
Authors: Samuel J. Mugavero III; William R Gemmill; Hans-Conrad zur Loye;
Materials Discovery by Crystal Growth
Abstract
AbstractThe growth of new phases out of high temperature hydroxide solutions as a means of discovering new materials is discussed. We have succeeded in solubilizing rare earth cations and platinum group metal cations in molten hydroxides and have grown single crystals with a large number of new compositions and new structure types. The use of sealed silver tubes has enabled us to control the water content and, hence, the acidity of the hydroxide melts, and thereby to grow crystals via slow cooling. The synthetic conditions and structures of several new oxides including Ln1-xNa1+xIrO4 (Ln = Gd-Er, Y; x = 0.04-0.26), Ln3RuO7 (Ln = La, Sm, Eu), LnNaPd6O8 (Ln = Tb-Lu, Y) and La9RbIr4O24 are presented.
Related Organizations
- Anderson University - South Carolina United States
- University of South Carolina United States
- University of South Carolina System United States
12 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2023IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
0
Average
Average
Average
Fields of Science (4) View all
Fields of Science
