Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MRS Proceedings
Article . 2006 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions

Materials Discovery by Crystal Growth

Authors: Samuel J. Mugavero III; William R Gemmill; Hans-Conrad zur Loye;
Abstract

AbstractThe growth of new phases out of high temperature hydroxide solutions as a means of discovering new materials is discussed. We have succeeded in solubilizing rare earth cations and platinum group metal cations in molten hydroxides and have grown single crystals with a large number of new compositions and new structure types. The use of sealed silver tubes has enabled us to control the water content and, hence, the acidity of the hydroxide melts, and thereby to grow crystals via slow cooling. The synthetic conditions and structures of several new oxides including Ln1-xNa1+xIrO4 (Ln = Gd-Er, Y; x = 0.04-0.26), Ln3RuO7 (Ln = La, Sm, Eu), LnNaPd6O8 (Ln = Tb-Lu, Y) and La9RbIr4O24 are presented.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average