Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Regulation of Keratin 9 in Nonpalmoplantar Keratinocytes by Palmoplantar Fibroblasts Through Epithelial–Mesenchymal Interactions

Authors: Yamaguchi, Yuji; Itami, Satoshi; Tarutani, Masahito; Hosokawa, Ko; Miura, Hiroyuki; Yoshikawa, Kunihiko;

Regulation of Keratin 9 in Nonpalmoplantar Keratinocytes by Palmoplantar Fibroblasts Through Epithelial–Mesenchymal Interactions

Abstract

Palms and soles differ from other body sites in terms of clinical and histologic appearance, response to mechanical stress, and the distribution of keratin 9. Because keratin 9 is exclusively expressed in the palmoplantar suprabasal keratinocyte layers, it is considered a differentiation marker of palms and soles. We studied palmoplantar mesenchymal influences on keratin 9 induction in nonpalmoplantar epidermis. Although palmoplantar keratinocytes when cultured alone continued to express keratin 9 mRNA in 12 (100%) of 12 cultures, nonpalmoplantar keratinocytes did not express it in 16 of 17 cultures. Although nonpalmoplantar keratinocytes did not express keratin 9 mRNA when cultured with nonpalmoplantar fibroblasts, they did express it within 2 h in cocultures with palmoplantar fibroblasts derived from papillary dermis. Grafting of these coculture sheets on severe combined immunodeficient mice resulted in an epidermis, which histologically showed hyperkeratosis and acanthosis and immunohistochemically expressed keratin 9. Furthermore, pure epidermal sheets from nonpalmoplantar skin grafted on the human sole wounds due to burn, injury, and the resection of acral lentiginous melanoma, demonstrated adoption of palmoplantar phenotype and expressed keratin 9. Our report indicates extrinsic keratin 9 regulation by signals from dermal fibroblasts. This is also the first to suggest the possibility of treating palmoplantar wounds with nonpalmoplantar epidermis, which is much easier to obtain and harvest.

Related Organizations
Keywords

Keratinocytes, Epithelial Cells, Cell Biology, Dermatology, Mice, SCID, Fibroblasts, Biochemistry, Mesoderm, Mice, Gene Expression Regulation, Animals, Humans, Keratins, RNA, Messenger, Molecular Biology, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 10%
Top 10%
Top 10%
hybrid