AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes
pmid: 25128166
AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes
Exposure of cardiomyocytes to high glucose concentrations (HG) stimulates reactive oxygen species (ROS) production by NADPH oxidase (NOX2). NOX2 activation is triggered by enhanced glucose transport through a sodium-glucose cotransporter (SGLT) but not by a stimulation of glucose metabolism. The aim of this work was to identify potential therapeutic approaches to counteract this glucotoxicity. In cultured adult rat cardiomyocytes incubated with 21 mM glucose (HG), AMP-activated protein kinase (AMPK) activation by A769662 or phenformin nearly suppressed ROS production. Interestingly, glucagon-like peptide 1 (GLP-1), a new antidiabetic drug, concomitantly induced AMPK activation and prevented the HG-mediated ROS production (maximal effect at 100 nM). α2-AMPK, the major isoform expressed in cardiomyocytes (but not α1-AMPK), was activated in response to GLP-1. Anti-ROS properties of AMPK activators were not related to changes in glucose uptake or glycolysis. Using in situ proximity ligation assay, we demonstrated that AMPK activation prevented the HG-induced p47phox translocation to caveolae, whatever the AMPK activators used. NOX2 activation by either α-methyl-d-glucopyranoside, a glucose analog transported through SGLT, or angiotensin II was also counteracted by GLP-1. The crucial role of AMPK in limiting HG-mediated NOX2 activation was demonstrated by overexpressing a constitutively active form of α2-AMPK using adenoviral infection. This overexpression prevented NOX2 activation in response to HG, whereas GLP-1 lost its protective action in α2-AMPK-deficient mouse cardiomyocytes. Under HG, the GLP-1/AMPK pathway inhibited PKC-β2 phosphorylation, a key element mediating p47phox translocation. In conclusion, GLP-1 induces α2-AMPK activation and blocks HG-induced p47phox translocation to the plasma membrane, thereby preventing glucotoxicity.
- Université Catholique de Louvain Belgium
- de Duve Institute Belgium
- Cliniques Universitaires Saint-Luc Belgium
Male, Membrane Glycoproteins, Biphenyl Compounds, Methylglucosides, NADPH Oxidases, AMP-Activated Protein Kinases, Rats, Protein Transport, Glucose, Phenformin, Glucagon-Like Peptide 1, Pyrones, NADPH Oxidase 2, Animals, Hypoglycemic Agents, Myocytes, Cardiac, Rats, Wistar, Reactive Oxygen Species, Cells, Cultured, Protein Kinase C
Male, Membrane Glycoproteins, Biphenyl Compounds, Methylglucosides, NADPH Oxidases, AMP-Activated Protein Kinases, Rats, Protein Transport, Glucose, Phenformin, Glucagon-Like Peptide 1, Pyrones, NADPH Oxidase 2, Animals, Hypoglycemic Agents, Myocytes, Cardiac, Rats, Wistar, Reactive Oxygen Species, Cells, Cultured, Protein Kinase C
21 Research products, page 1 of 3
- 2000IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2016IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).113 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
