Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Plant-Micr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant-Microbe Interactions
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Plant-Microbe Interactions
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

The Arabidopsis Downy Mildew Resistance Gene RPP8 Is Induced by Pathogens and Salicylic Acid and Is Regulated by W Box cis Elements

Authors: Toni J. Mohr; Nicole D. Mammarella; Troy Hoff; Bonnie J. Woffenden; John G. Jelesko; John M. McDowell;

The Arabidopsis Downy Mildew Resistance Gene RPP8 Is Induced by Pathogens and Salicylic Acid and Is Regulated by W Box cis Elements

Abstract

Plants disease resistance (R) genes encode specialized receptors that are quantitative, rate-limiting defense regulators. R genes must be expressed at optimum levels to function properly. If expression is too low, downstream defense responses are not activated efficiently. Conversely, overexpression of R genes can trigger autoactivation of defenses with deleterious consequences for the plant. Little is known about R gene regulation, particularly under defense-inducing conditions. We examined regulation of the Arabidopsis thaliana gene RPP8 (resistance to Hyaloperonospora arabidopsidis, isolate Emco5). RPP8 was induced in response to challenge with H. arabidopsidis or application of salicylic acid, as shown with RPP8-Luciferase transgenic plants and quantitative reverse-transcription polymerase chain reaction of endogenous alleles. The RPP1 and RPP4 genes were also induced by H. arabidopsidis and salicylic acid, suggesting that some RPP genes are subject to feedback amplification. The RPP8 promoter contains three W box cis elements. Site-directed mutagenesis of all three W boxes greatly diminished RPP8 basal expression, inducibility, and resistance in transgenic plants. Motif searches indicated that the W box is the only known cis element that is statistically overrepresented in Arabidopsis nucleotide-binding leucine-rich repeat promoters. These results indicate that WRKY transcription factors can regulate expression of surveillance genes at the top of the defense-signaling cascade.

Keywords

Arabidopsis Proteins, Botany, Arabidopsis, Plants, Genetically Modified, Microbiology, QR1-502, Oomycetes, Gene Expression Regulation, Plant, QK1-989, Host-Pathogen Interactions, Luciferases, Promoter Regions, Genetic, Salicylic Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%
gold