Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons
pmid: 32657758
pmc: PMC7394546
Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons
Neurons contain polarised microtubule arrays essential for neuronal function. How microtubule nucleation and polarity are regulated within neurons remains unclear. We show that γ-tubulin localises asymmetrically to the somatic Golgi within Drosophila neurons. Microtubules originate from the Golgi with an initial growth preference towards the axon. Their growing plus ends also turn towards and into the axon, adding to the plus-end-out microtubule pool. Any plus ends that reach a dendrite, however, do not readily enter, maintaining minus-end-out polarity. Both turning towards the axon and exclusion from dendrites depend on Kinesin-2, a plus-end-associated motor that guides growing plus ends along adjacent microtubules. We propose that Kinesin-2 engages with a polarised microtubule network within the soma to guide growing microtubules towards the axon; while at dendrite entry sites engagement with microtubules of opposite polarity generates a backward stalling force that prevents entry into dendrites and thus maintains minus-end-out polarity within proximal dendrites.
[SDV.BA] Life Sciences [q-bio]/Animal biology, QH301-705.5, Science, Golgi Apparatus, Kinesins, neurons, Microtubules, neuroscience, microtubules, cell biology, [SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC], Golgi, Kinesin-2, Animals, Drosophila Proteins, polarity, Biology (General), Neurons, D. melanogaster, Q, R, Cell Polarity, Cell Biology, g-turc, [SDV] Life Sciences [q-bio], Drosophila melanogaster, Larva, Medicine, Research Article, Neuroscience
[SDV.BA] Life Sciences [q-bio]/Animal biology, QH301-705.5, Science, Golgi Apparatus, Kinesins, neurons, Microtubules, neuroscience, microtubules, cell biology, [SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC], Golgi, Kinesin-2, Animals, Drosophila Proteins, polarity, Biology (General), Neurons, D. melanogaster, Q, R, Cell Polarity, Cell Biology, g-turc, [SDV] Life Sciences [q-bio], Drosophila melanogaster, Larva, Medicine, Research Article, Neuroscience
2 Research products, page 1 of 1
- 2012IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
