Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The lamin B receptor of Drosophila melanogaster

Authors: Nicole, Wagner; Daniela, Weber; Sabine, Seitz; Georg, Krohne;

The lamin B receptor of Drosophila melanogaster

Abstract

The lamin B receptor (LBR) is an integral membrane protein of the inner nuclear membrane that has so far been characterized only in vertebrates. Here, we describe the Drosophila melanogaster protein encoded by the annotated gene CG17952 that is the putative ortholog to the vertebrate LBR. The Drosophila lamin B receptor (dLBR) has the following properties in common with the vertebrate LBR. First, structure predictions indicate that the 741 amino acid dLBR protein possesses a highly charged N-terminal domain of 307 amino acids followed by eight transmembrane segments in the C-terminal domain of the molecule. Second, immunolocalization and cell fractionation reveal that the dLBR is an integral membrane protein of the inner nuclear membrane. Third, dLBR can be shown by co-immunoprecipitations and in vitro binding assays to bind to the Drosophila B-type lamin Dm0. Fourth, the N-terminal domain of dLBR is sufficient for in vitro binding to sperm chromatin and lamin Dm0. In contrast to the human LBR, dLBR does not possess sterol C14 reductase activity when it is expressed in the Saccharomyces cerevisiae erg24 mutant, which lacks sterol C14 reductase activity. Our data raise the possibility that, during evolution, the enzymatic activity of this insect protein had been lost.To determine whether the dLBR is an essential protein, we depleted it by RNA interference in Drosophila embryos and in cultured S2 and Kc167 cells. There is no obvious effect on the nuclear architecture or viability of treated cells and embryos, whereas the depletion of Drosophila lamin Dm0 in cultured cells and embryos caused morphological alterations of nuclei, nuclear fragility and the arrest of embryonic development. We conclude that dLBR is not a limiting component of the nuclear architecture in Drosophila cells during the first 2 days of development.

Related Organizations
Keywords

Cell Nucleus, Male, DNA, Complementary, Green Fluorescent Proteins, Down-Regulation, Lipid Metabolism, Chromatin, Lamins, Mass Spectrometry, Cell Line, Drosophila melanogaster, Databases as Topic, COS Cells, Animals, Drosophila Proteins, Humans, Immunoprecipitation, Electrophoresis, Polyacrylamide Gel, Amino Acid Sequence, Fluorescent Antibody Technique, Indirect

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
bronze