Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2006 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2006
versions View all 2 versions

Protein Kinase C α but not PKCζ Suppresses Intestinal Tumor Formation in ApcMin/+ Mice

Authors: Henrik Oster; Michael Leitges;

Protein Kinase C α but not PKCζ Suppresses Intestinal Tumor Formation in ApcMin/+ Mice

Abstract

Abstract Members of the protein kinase C (PKC) family of serine/threonine kinases play key regulatory roles in numerous cellular processes, including differentiation and proliferation. Of the 11 mammalian PKC isoforms known, several have been implicated in tumor development and progression. However, in most cases, isotype specificity is poorly defined, and even contrary functions for a single PKC have been reported mostly because appropriate molecular and genetic tools were missing to specifically assess the contribution of single PKC isoforms in vivo. In this report, we therefore used PKC genetic targeting to study the role of PKCα and PKCζ in colorectal cancer. Both isoforms were found to be strongly down-regulated in intestinal tumors of ApcMin/+ mice. A deletion of PKCζ did not affect tumorigenesis in this animal model. In contrast, PKCα-deficient ApcMin/+ mice developed more aggressive tumors and died significantly earlier than their PKCα-proficient littermates. Even without an additional Apc mutation, PKCα knockout mice showed an elevated tendency to develop spontaneous intestinal tumors. Transcriptional profiling revealed a role for this kinase in regulating epidermal growth factor receptor (EGFR) signaling and proposed a synergistic mechanism for EGFR/activator protein and WNT/APC pathways in mediating intestinal tumor development. (Cancer Res 2006; 66(14): 6955-63)

Related Organizations
Keywords

Mice, Knockout, Protein Kinase C-alpha, Epidermal Growth Factor, Transcription, Genetic, Gene Expression Profiling, Down-Regulation, Intestinal Polyps, ErbB Receptors, Mice, Inbred C57BL, Mice, Genes, jun, Animals, Intercellular Signaling Peptides and Proteins, Betacellulin, Colorectal Neoplasms, Protein Kinase C, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research