Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Biochemistry & Cell Biology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-Prolyl-tRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex

Authors: Schwarz, Margaret A.; Lee, Daniel D.; Bartlett, Seamus;

Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-Prolyl-tRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex

Abstract

Higher eukaryotes have developed extensive compartmentalization of amino acid (aa) - tRNA coupling through the formation of a multi-synthetase complex (MSC) that is composed of eight aa-tRNA synthetases (ARS) and three scaffold proteins: aminoacyl tRNA synthetase complex interacting multifunctional proteins (AIMP1, 2 and 3). Lower eukaryotes have a much smaller complex while yeast MSC consists of only two ARS (MetRS and GluRS) and one ARS cofactor 1 protein, Arc1p (Simos et al., 1996), the homolog of the mammalian AIMP1. Arc1p is reported to form a tripartite complex with GluRS and MetRS through association of the N-terminus GST-like domains (GST-L) of the three proteins (Koehler et al., 2013). Mammalian AIMP1 has no GST-L domain corresponding to Arc1p N-terminus. Instead, AIMP3, another scaffold protein of 18 kDa composed entirely of a GST-L domain, interacts with Methionyl-tRNA synthetase (MARS) (Quevillon et al., 1999) and Glutamyl-Prolyl-tRNA Synthetase (EPRS) (Cho et al., 2015). Here we report two new interactions between MSC members: AIMP1 binds to EPRS and AIMP1 binds to AIMP3. Interestingly, the interaction between AIMP1 and AIMP3 complex makes it the functional equivalent of a single Arc1p polypeptide in yeast. This interaction is not mapped to AIMP1 N-terminal coiled-coil domain, but rather requires an intact tertiary structure of the entire protein. Since AIMP1 also interacts with AIMP2, all three proteins appear to compose a core docking structure for the eight ARS in the MSC complex.

Keywords

RNA-protein interaction, Saccharomyces cerevisiae Proteins, Methionine-tRNA Ligase, Saccharomyces cerevisiae, Transfer RNA (tRNA), Amino Acyl-tRNA Synthetases, HEK293 Cells, Multiprotein Complexes, Humans, Aminoacyl tRNA synthetase, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average
bronze