Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTEOMICSarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
PROTEOMICS
Article . 2015
versions View all 2 versions

The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation

Authors: Stan, Pasyk; Steven, Molinski; Saumel, Ahmadi; Mohabir, Ramjeesingh; Ling-Jun, Huan; Stephanie, Chin; Kai, Du; +4 Authors

The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation

Abstract

The major cystic fibrosis causing mutation, F508del‐CFTR (where CFTR is cystic fibrosis transmembrane conductance regulator), impairs biosynthetic maturation of the CFTR protein, limiting its expression as a phosphorylation‐dependent channel on the cell surface. The maturation defect can be partially rescued by low‐temperature (27°C) cell culture conditions or small‐molecule corrector compounds. Following its partial rescue, the open probability of F508del‐CFTR is enhanced by the potentiator compound, VX‐770. However, the channel activity of rescued F508del‐CFTR remains less than that of the Wt‐CFTR protein in the presence of VX‐770. In this study, we asked if there are allosteric effects of F508del on the phosphorylation‐regulated R domain. To identify defects in the R domain, we compared the phosphorylation status at protein kinase A sites in the R domain of Wt and F508del‐CFTR. Here we show that phosphorylation of Ser‐660, quantified by SRM‐MS, is reduced in F508del‐CFTR. Although the generation of a phosphomimic at this site (substituting aspartic acid for serine) did not modify the maturation defect, it did enhance F508del‐CFTR channel function after pharmacological rescue with corrector VX‐809, and treatment with the potentiator, VX‐770. These findings support the concept that defective phosphorylation of F508del‐CFTR partially accounts for its altered channel activity at the cell surface.

Keywords

Cystic Fibrosis, Molecular Sequence Data, Cystic Fibrosis Transmembrane Conductance Regulator, Cyclic AMP-Dependent Protein Kinases, Cell Line, Protein Structure, Tertiary, HEK293 Cells, Cricetinae, Animals, Humans, Amino Acid Sequence, Phosphorylation, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Average
Top 10%