Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Pharmacol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The Nuclear Receptors Constitutive Androstane Receptor and Pregnane X Receptor Cross-Talk with Hepatic Nuclear Factor 4α to Synergistically Activate the Human CYP2C9 Promoter

Authors: Yuping Chen; Masahiko Negishi; Joyce A. Goldstein; Grace E. Kissling;

The Nuclear Receptors Constitutive Androstane Receptor and Pregnane X Receptor Cross-Talk with Hepatic Nuclear Factor 4α to Synergistically Activate the Human CYP2C9 Promoter

Abstract

CYP2C9 is an important human drug-metabolizing enzyme that is expressed primarily in liver. Recent studies in our laboratory have shown that the nuclear receptor pregnane X receptor (PXR) is important in the transcriptional activation of the CYP2C9 promoter by drugs such as rifampicin and that the essential element is a constitutive androstane receptor (CAR)/PXR site -1839 bp upstream of the translation start site. Both CAR and PXR transcriptionally up-regulate the CYP2C9 promoter via these elements. In the present study, we ask whether additional sites in the proximal promoter also play a role in this induction. We identify two proximal hepatic nuclear factor (HNF) 4alpha binding sites at -152 and -185 bp of the CYP2C9 promoter, both of which bind HNF4alpha in gel shift assays and transcriptionally up-regulate this promoter in response to HNF4alpha in HepG2 cells. HNF4alpha synergizes with CAR and with PXR in HepG2 cells treated with rifampicin. The synergy only occurs when the CAR/PXR binding site at -1839 bp is present. Mutation of the two HNF4alpha binding sites differentially prevented up-regulation of CYP2C9 promoter by both CAR as well as HNF4alpha, synergy between the two receptors, and essentially abolished induction by rifampicin in HepG2 cells transfected with PXR. These studies strongly support the hypothesis that there is cross talk between distal CAR/PXR sites and HNF4alpha binding sites in the CYP2C9 promoter and that the HNF4alpha sites are required for maximal induction of the CYP2C9 promoter.

Keywords

Receptors, Steroid, Binding Sites, Pregnane X Receptor, Receptors, Cytoplasmic and Nuclear, Phosphoproteins, Dexamethasone, DNA-Binding Proteins, Gene Expression Regulation, Hepatocyte Nuclear Factor 4, Humans, Aryl Hydrocarbon Hydroxylases, Rifampin, Promoter Regions, Genetic, Cells, Cultured, Constitutive Androstane Receptor, Cytochrome P-450 CYP2C9, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 10%
Top 10%
Top 1%