Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The GTPase Center Protein L12 Is Required for Correct Ribosomal Stalk Assembly but Not for Saccharomyces cerevisiaeViability

Authors: Elisa Briones; Miguel Remacha; Juan P. G. Ballesta; Carlos Briones;

The GTPase Center Protein L12 Is Required for Correct Ribosomal Stalk Assembly but Not for Saccharomyces cerevisiaeViability

Abstract

Protein L12, together with the P0/P1/P2 protein complex, forms the protein moiety of the GTPase domain in the eukaryotic ribosome. In Saccharomyces cerevisiae protein L12 is encoded by a duplicated gene, rpL12A and rpL12B. Inactivation of both copies has been performed and confirmed by Southern and Western analyses. The resulting strains are viable but grow very slowly. Growth rate is recovered upon transformation with an intact copy of the L12 gene. Ribosomes from the disrupted strain lack protein L12 but are able to carry out translation in vitro at about one fourth of the control rate. The L12-deficient ribosomes have also a defective stalk containing standard amounts of the 12-kDa acidic proteins P1beta and P2alpha, but proteins P1alpha and P2beta are drastically reduced. Moreover, the affinity of P0 is reduced in the defective ribosomes. Footprinting of the 26 S rRNA GTPase domain indicates that protein L12 protects in different extent residues G1235, G1242, A1262, A1270, and A1272 from chemical modification. The results in this report indicate that protein L12 is not essential for cell viability but has a relevant role in the structure and stability of the eukaryotic ribosomal stalk.

Related Organizations
Keywords

Models, Molecular, Ribosomal Proteins, Base Sequence, Genes, Fungal, Molecular Sequence Data, Temperature, RNA, Fungal, Saccharomyces cerevisiae, Spores, Fungal, GTP Phosphohydrolases, RNA, Ribosomal, Multigene Family, Nucleic Acid Conformation, Ribosomes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
gold