Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions

Isolation and Characterization of Two Novel, Cytoplasmically Polyadenylated, Oocyte-Specific, Mouse Maternal RNAs

Authors: WEST M. F.; VERROTTI DI PIANELLA, ARTURO; SALLES F. J.; TSIRKA S. E.; STRICKLAND S.;

Isolation and Characterization of Two Novel, Cytoplasmically Polyadenylated, Oocyte-Specific, Mouse Maternal RNAs

Abstract

During early development in mouse and Xenopus, translational activation of stored maternal mRNAs by cytoplasmic polyadenylation requires both the nuclear polyadenylation signal AAUAAA and U-rich cis-acting adenylation control elements (ACEs), also termed cytoplasmic polyadenylation elements, located in the 3' UTR. Using an ACE-based PCR strategy (Sallés et al., 1992) we have isolated two novel cDNAs from mouse oocytes: OM2a and OM2b (for Oocyte Maturation). Each message contains an ACE consensus sequence upstream of AAUAAA, is specifically transcribed in the growing oocyte, and is cytoplasmically polyadenylated upon oocyte maturation. Comparison of the mouse and rat homologs reveals considerable nucleotide sequence homology and conservation of overall gene organization. However, the predicted open reading frames are far less conserved, suggesting that these genes may not be functioning as proteins. The tissue specificity and tight temporal regulation of the RNAs suggest a role for these genes during early development.

Keywords

Cytoplasm, Molecular Sequence Data, Sequence Homology, Regulatory Sequences, Nucleic Acid, Mice, Oogenesis, Animals, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, RNA Processing, Post-Transcriptional, Molecular Biology, In Situ Hybridization, Genome, Base Sequence, Chromosome Mapping, Gene Expression Regulation, Developmental, Cell Biology, Blotting, Northern, Rats, Female, Poly A, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Average
Top 10%
Top 10%
hybrid