<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
MUC16 Is Lost from the Uterodome (Pinopode) Surface of the Receptive Human Endometrium: In Vitro Evidence That MUC16 Is a Barrier to Trophoblast Adherence1

pmid: 17942799
MUC16 Is Lost from the Uterodome (Pinopode) Surface of the Receptive Human Endometrium: In Vitro Evidence That MUC16 Is a Barrier to Trophoblast Adherence1
In order for the preimplantation embryo to implant into the uterus, the trophoblast cells must initially adhere to the uterine epithelial surface. In preparation, the luminal secretory cells of the epithelium lose their nonadhesive character and their surface microvilli and bulge into the lumen, forming uterodomes (pinopodes; uterodome is used instead of pinopode, since in humans the surface membrane exocytoses rather than endocytoses (Murphy, Hum Reprod 2000; 15:2451-2454). Previous research has led to the hypothesis that loss of the nonadhesive membrane-spanning mucin MUC1 from the uterodome surface allows trophoblast adherence. Immunofluorescence microscopic assay of luminal epithelia on human uterine biopsies taken from LH+0 to LH+13 show that another membrane-spanning mucin, MUC16, was lost from uterodome surfaces in all samples taken during the receptive phase, LH+6 to LH+8 (n = 12), and that MUC1 was present on uterodomes in 4 of 12 samples and on all ciliated cells of the epithelium in the receptive phase. Short interfering RNA (siRNA) knockdown of MUC16 in a uterine epithelial cell line ECC-1 that, like uterine epithelium, expresses MUC16 and MUC1 allowed increased adherence of cells of a trophoblast cell line. In parallel experiments, siRNA knockdown of MUC1 did not affect trophoblast cell adherence. These data indicate that MUC16 is a membrane component of the nonreceptive luminal uterine surface, which prevents cell adhesion, and that its removal during uterodome formation facilitates adhesion of the trophoblast.
- Harvard University United States
- Karolinska Institute Sweden
Adult, Mucin-1, Membrane Proteins, Epithelium, Cell Line, Trophoblasts, Tissue Culture Techniques, Endometrium, CA-125 Antigen, Cell Adhesion, Humans, Female, RNA Interference, RNA, Messenger
Adult, Mucin-1, Membrane Proteins, Epithelium, Cell Line, Trophoblasts, Tissue Culture Techniques, Endometrium, CA-125 Antigen, Cell Adhesion, Humans, Female, RNA Interference, RNA, Messenger
9 Research products, page 1 of 1
- 2008IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2001IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).99 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%