Powered by OpenAIRE graph

Experimentally Guided Structural Modeling and Dynamics Analysis of Hsp90–p53 Interactions: Allosteric Regulation of the Hsp90 Chaperone by a Client Protein

Authors: Gennady M. Verkhivker; Gennady M. Verkhivker; Kristin Blacklock;

Experimentally Guided Structural Modeling and Dynamics Analysis of Hsp90–p53 Interactions: Allosteric Regulation of the Hsp90 Chaperone by a Client Protein

Abstract

A fundamental role of the Hsp90 chaperone system in mediating maturation of protein clients is essential for the integrity of signaling pathways involved in cell cycle control and organism development. Molecular characterization of Hsp90 interactions with client proteins is fundamental to understanding the activity of many tumor-inducing signaling proteins and presents an active area of structural and biochemical studies. In this work, we have probed mechanistic aspects of allosteric regulation of Hsp90 by client proteins via a detailed computational study of Hsp90 interactions with the tumor suppressor protein p53. Experimentally guided protein docking and molecular dynamics structural refinement have reconstructed the recognition-competent states of the Hsp90-p53 complexes that are consistent with the NMR studies. Protein structure network analysis has identified critical interacting networks and specific residues responsible for structural integrity and stability of the Hsp90-p53 complexes. Coarse-grained modeling was used to characterize the global dynamics of the regulatory complexes and map p53-induced changes in the conformational equilibrium of Hsp90. The variations in the functional dynamics profiles of the Hsp90-p53 complexes are consistent with the NMR studies and could explain differences in the functional role of the alternative binding sites. Despite the overall similarity of the collective movements and the same global interaction footprint, p53 binding at the C-terminal interaction site of Hsp90 may have a more significant impact on the chaperone dynamics, which is consistent with the stronger allosteric effect of these interactions revealed by the experimental studies. The results suggest that p53-induced modulation of the global dynamics and structurally stable interaction networks can target the regulatory hinge regions and facilitate stabilization of the closed Hsp90 dimer that underlies the fundamental stimulatory effect of the p53 client.

Keywords

Binding Sites, Molecular Dynamics Simulation, Protein Structure, Secondary, Molecular Docking Simulation, Kinetics, Allosteric Regulation, Humans, Thermodynamics, Protein Interaction Domains and Motifs, HSP90 Heat-Shock Proteins, Amino Acids, Protein Multimerization, Tumor Suppressor Protein p53, Databases, Protein, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%