Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ bioRxivarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2020.0...
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Cell
Article . 2021
versions View all 5 versions

Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein

Authors: Laura Klasek; Kentaro Inoue; Steven M. Theg;

Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein

Abstract

AbstractPost-translational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins post-translationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in Plsp1’s thylakoid targeting. In isolated thylakoids, the integration of Plsp1 decreased if Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon which inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60’s obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, while cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins transiting the stroma can interact with Cpn60 to shield from the aqueous environment.One-sentence summaryThe chloroplast chaperonin captures and releases Plastidic type I signal peptidase 1 during its targeting to the thylakoid membrane.

Country
United States
Keywords

Plant biology, 570, Chloroplasts, Chaperonins, Plant Biology & Botany, Serine Endopeptidases, Plant Biology, Membrane Proteins, Biological Sciences, Thylakoids, Protein Transport, Plant Stomata, Thylakoid Membrane Proteins, Genetics, Biochemistry and Cell Biology, Pisum sativum, Molecular Chaperones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
hybrid