Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antimicrobial Agents...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Antimicrobial Agents and Chemotherapy
Article . 2008 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Structure-Function Correlations of Two Highly Conserved Motifs inSaccharomyces cerevisiaeSqualene Epoxidase

Authors: Christoph, Ruckenstuhl; Andrea, Poschenel; Reinhard, Possert; Pravas Kumar, Baral; Karl, Gruber; Friederike, Turnowsky;

Structure-Function Correlations of Two Highly Conserved Motifs inSaccharomyces cerevisiaeSqualene Epoxidase

Abstract

ABSTRACTSaccharomyces cerevisiaesqualene epoxidase contains two highly conserved motifs, 1 and 2, of unknown function. Amino acid substitutions in both regions reduce enzyme activity and/or alter allylamine sensitivity. In the homology model, these motifs flank the flavin adenine dinucleotide cofactor and form part of the interface between cofactor and substrate binding domains.

Related Organizations
Keywords

Models, Molecular, Structure-Activity Relationship, Saccharomyces cerevisiae Proteins, Squalene Monooxygenase, Amino Acid Motifs, Amino Acid Sequence, Saccharomyces cerevisiae, Conserved Sequence, Allylamine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
bronze