Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Eye Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Eye Research
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The stability of human acidic β-crystallin oligomers and hetero-oligomers

Authors: O A, Bateman; R, Sarra; S T, van Genesen; G, Kappé; N H, Lubsen; C, Slingsby;

The stability of human acidic β-crystallin oligomers and hetero-oligomers

Abstract

Crystallins are bulk structural proteins of the eye lens that have to last a life time. They gradually become modified with age, denature and form light scattering centres. High thermodynamic and kinetic stability of the crystallins enables them to resist unfolding and delay cataract. Here we have made recombinant human betaA1-, betaA3-, and betaA4-crystallins. The betaA3-crystallin formed higher oligomers that lead to precipitation at ambient temperature. Heat-induced precipitation of betaA3-crystallin was compared with human and calf betaB2-crystallins, showing that the human proteins start to precipitate above 50 degrees C while the calf betaB2-crystallin stays in solution even when unfolded. The stabilities of these human acidic beta-crystallin homo-oligomers have been estimated by measuring their unfolding in urea at neutral pH. BetaA3/1/betaB1 and betaA4/betaB1-crystallin hetero-oligomers have been prepared from homo-oligomers by subunit exchange. The resolution of the methodology used was insufficient to detect a stabilization of the betaA4-crystallin subunit in the hetero-oligomer, the betaA1-crystallin subunit was clearly stabilized by its interaction with betaB1-crystallin. Circular dichroism and fluorescence spectroscopies show that homo-dimer surface tryptophans become buried in the betaA3/1/betaB1-crystallin hetero-dimer concomitant with changes in polypeptide chain conformation.

Related Organizations
Keywords

Protein Denaturation, Hot Temperature, Circular Dichroism, Tryptophan, Chromatography, Ion Exchange, beta-Crystallins, Recombinant Proteins, Rats, beta-Crystallin A Chain, Spectrometry, Fluorescence, beta-Crystallin B Chain, Animals, Chemical Precipitation, Humans, Urea, Cattle

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%