Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana

Authors: Joachim, Schuster; Stefan, Binder;

The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana

Abstract

Plants are capable to de novo synthesize the essential amino acids leucine, isoleucine and valine. Studies in recent years, however, also revealed that plants have the potential to degrade leucine or may be all of the branched-chain amino acids. One of the enzymes participating in both biosynthesis and degradation is the branched-chain aminotransferase, which is in Arabidopsis thaliana encoded by a small gene family with six transcribed members. We have now studied the steady state mRNA levels by quantitative RT-PCR and promoter activities of these genes with promoter::glucuronidase reporter gene constructs in transgenic plants. The gene encoding the mitochondrial isoenzyme (Atbcat-1) is expressed in all tissues with predominant transcription in seedlings and leaves. Surprisingly the plastid located proteins (AtBCAT-2, -3 and -5) are expressed at rather low levels with only Atbcat-3 transcribed in all tissues. The most likely cytoplasmic-located AtBCAT-4 and AtBCAT-6 are mainly expressed in tissues associated with transport function and in meristematic tissues, respectively. A detailed characterization of the enzyme activity and substrate specificity of the mitochondrial AtBCAT-1 enzyme revealed the potential of this enzyme to initiate degradation of all branched-chain amino acids. In addition alpha-aminobutyrate and alpha-ketobutyrate as well as methionine and alpha-ketomethylthiobutyrate are identified as substrates. This suggests that AtBCAT-1 and potentially other members of this protein family may influence methionine levels and may play an important role in the metabolism of the nonprotein amino acid alpha-aminobutyrate. The consequences of these substrate specificities for bioplastic production and methionine homeostasis are discussed.

Related Organizations
Keywords

Arabidopsis Proteins, Aminobutyrates, Recombinant Fusion Proteins, Arabidopsis, Plants, Genetically Modified, Keto Acids, Gene Expression Regulation, Enzymologic, Mitochondrial Proteins, Butyrates, Kinetics, Hemiterpenes, Methionine, Deamination, Gene Expression Regulation, Plant, Leucine, RNA, Messenger, Isoleucine, Promoter Regions, Genetic, Amino Acids, Branched-Chain, Glucuronidase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%