Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2003
versions View all 3 versions

Fission Yeast COP9/Signalosome Suppresses Cullin Activity through Recruitment of the Deubiquitylating Enzyme Ubp12p

Authors: Zhou, Chunshui; Wee, Susan; Rhee, Edward; Naumann, Michael; Dubiel, Wolfgang; Wolf, Dieter A;

Fission Yeast COP9/Signalosome Suppresses Cullin Activity through Recruitment of the Deubiquitylating Enzyme Ubp12p

Abstract

The COP9/signalosome (CSN) is known to remove the stimulatory NEDD8 modification from cullins. The activity of the fission yeast cullins Pcu1p and Pcu3p is dramatically stimulated when retrieved from csn mutants but inhibited by purified CSN. This inhibition is independent of cullin deneddylation but mediated by the CSN-associated deubiquitylating enzyme Ubp12p, which forms a complex with Pcu3p in a CSN-dependent manner. In ubp12 mutants, as in csn mutants, Pcu3p activity is stimulated. CSN is required for efficient targeting of Ubp12p to the nucleus, where both cullins reside. Finally, the CSN/Ubp12p pathway maintains the stability of the Pcu1p-associated substrate-specific adaptor protein Pop1p. We propose that CSN/Ubp12p-mediated deubiquitylation creates an environment for the safe de novo assembly of cullin complexes by counteracting the autocatalytic destruction of adaptor proteins.

Keywords

Cell Nucleus, COP9 Signalosome Complex, Ubiquitin, Active Transport, Cell Nucleus, Proteins, Cell Cycle Proteins, Cell Biology, Cullin Proteins, Adaptor Proteins, Vesicular Transport, Ribonucleoproteins, Multiprotein Complexes, Endopeptidases, Mutation, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Molecular Biology, Cells, Cultured, Peptide Hydrolases, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 10%
Top 10%
Top 1%
hybrid