Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2007
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Glypicans are differentially expressed during patterning and neurogenesis of early mouse brain

Authors: Luxardi, G.; Galli, A.; Forlani, S.; Lawson, K.; Maina, F.; Dono, R.;

Glypicans are differentially expressed during patterning and neurogenesis of early mouse brain

Abstract

Glypicans are essential modulators of cell signalling during embryogenesis. Little is known about their functions in brain development. We show here that mouse glypicans (gpc-1 to gpc-6) are differentially expressed in embryonic brains during key morphogenetic events. In gastrulating embryos, gpc-4 is the only glypican expressed in anterior visceral endoderm. During neural tube closure, gpc-4 transcripts are restricted to the anterior neural ridge and telencephalon. At this stage, gpc-1 expression shifts from trunk and head mesenchyme to neural tube. Gpc-3 mRNA appears across the ventral neural tube, then in the lamina terminalis and hypothalamus. Gpc-2 and gpc-6 transcripts are in all brain compartments. Gpc-5 is found in ventral brains as neurogenesis starts. Onset of neurogenesis also coincides with differential expression of glypican genes either in neural progenitors or in differentiating neurons. The novel expression sites of glypicans shown here contribute to the identification of signalling molecules involved in brain patterning.

Keywords

Neurons, Mice, Time Factors, Glypicans, Animals, Brain, Gene Expression Regulation, Developmental, Embryo, Mammalian, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%