Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Immun...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Immunology
Article . 1984 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions

Phenotypic expression of genetically-controlled natural resistance to Mycobacterium bovis (BCG).

Authors: Stach, J; Gros, P; Forget, A; Skamene, E;

Phenotypic expression of genetically-controlled natural resistance to Mycobacterium bovis (BCG).

Abstract

Abstract Mycobacterium bovis (BCG), when maintained in vitro, readily incorporates [3H]uracil, the RNA precursor. The rate of [3H]uracil incorporation into bacilli is sharply reduced when the BCG is phagocytized by murine adherent resident peritoneal macrophages and subsequently released by the lysis of monolayers. Macrophages derived from mouse strains that are innately resistant to BCG infection in vivo (Bcgr) are able to inhibit the [3H]uracil incorporation into the bacilli in a significantly more effective way than macrophages from BCG-susceptible (Bcgs) strains. This difference is best demonstrated with a low rate of infection (BCG: macrophage ratio between 1:1 and 2:1), and is most pronounced at 4 to 5 days after in vitro infection of macrophage monolayers. In vivo interaction of BCG with peritoneal macrophages in situ results in the same pattern of enhanced inhibition of [3H]uracil incorporation by Bcgr macrophages. The use of Bcg-congenic mouse strains has confirmed that the Chromosome 1 Bcg (Ity, Lsh) locus is regulating the antimycobacterial activity of macrophages. We conclude that the resident macrophage is the cell population that expresses the phenotype of genetically determined resistance to BCG infection.

Related Organizations
Keywords

Male, Mice, Inbred A, Dose-Response Relationship, Immunologic, Mice, Strains:, Animals, Tuberculosis, Uracil, Mice, Inbred BALB C, Unknown:, Macrophages, Congenic Resistant Lines:, Genes:, Chromosome Mapping, Mycobacterium bovis, Immunity, Innate, Mice, Inbred C57BL, Kinetics, Phenotype, Mice, Inbred DBA, Bacteria:, Female, Hereditary Factors:, Serology:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    153
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
153
Top 10%
Top 1%
Top 1%